Non-monotonic changes in critical solidification rates for stability of liquid-solid interfaces with static magnetic fields

نویسندگان

  • W. L. Ren
  • Y. F. Fan
  • J. W. Feng
  • Y. B. Zhong
  • J. B. Yu
  • Z. M. Ren
  • P. K. Liaw
چکیده

We report the magnetic field dependence of the critical solidification rate for the stability of liquid-solid interfaces. For a certain temperature gradient, the critical solidification rate first increases, then decreases, and subsequently increases with increasing magnetic field. The effect of the magnetic field on the critical solidification rate is more pronounced at low than at high temperature gradients. The numerical simulations show that the magnetic-field dependent changes of convection velocity and contour at the interface agree with the experimental results. The convection velocity first increases, then decreases, and finally increases again with increasing the magnetic field intensity. The variation of the convection contour at the interface first decreases, then increases slightly, and finally increases remarkably with increasing the magnetic field intensity. Thermoelectromagnetic convection (TEMC) plays the role of micro-stirring the melt and is responsible for the increase of interface stability within the initially increasing range of magnetic field intensity. The weak and significant extents of the magneto-hydrodynamic damping (MHD)-dependent solute build-up at the interface front result, respectively, in the gradual decrease and increase of interfacial stability with increasing the magnetic field intensity. The variation of the liquid-side concentration at the liquid-solid interface with the magnetic field supports the proposed mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does Exposure to Static Magnetic Fields Generated by Magnetic Resonance Imaging Scanners Raise Safety Problems for Personnel?

MRI workers are occupationally exposed to static and time-varying gradient magnetic fields.  While the 24-hour time-averaged exposure to static magnetic fields is about a few mT, the maximum static field strength can be as high as 500 mT during patient setup. Over the past several years, our laboratory has performed extensive experiments on the health effects of exposure of animal models and h...

متن کامل

Influence of External Static Magnetic Fields on Properties of Metallic Functional Materials

Influence of external static magnetic fields on solidification, solid phase transformation of metallic materials have been reviewed in terms of Lorentz force, convection, magnetization, orientation, diffusion, and so on. However, the influence of external static magnetic fields on properties of metallic functional materials is rarely reviewed. In this paper, the effect of static magnetic fields...

متن کامل

Effects of magnetic fields on the seed germination and metabolism in two specious of Almond

During the past decade considerable evidence has been accumulated with regard to the biological effects, both in vivo and in vitro, of extremely low frequency electric and magnetic fields, such as those originating from residentially proximate power lines, household electrical wiring and diagnostic apparatus and therapy devices. Also, during the evolution process, all living organisms experienc...

متن کامل

The effect of 17 days exposure to static magnetic fields on the hypothalamic-pituitary-gonadal axis in the male rat

Power stations produce a range of magnetic fields more than 20 mT which are harmful to those working or living around them. Several investigators have reported an increased health risk due to exposure to electric and magnetic fields (EMF) at 50 and 60 Hz. Several studies have been reported especially with increased tumor incidence, effects on reproduction and development, and neural and behavio...

متن کامل

The effect of 17 days exposure to static magnetic fields on the hypothalamic-pituitary-gonadal axis in the male rat

Power stations produce a range of magnetic fields more than 20 mT which are harmful to those working or living around them. Several investigators have reported an increased health risk due to exposure to electric and magnetic fields (EMF) at 50 and 60 Hz. Several studies have been reported especially with increased tumor incidence, effects on reproduction and development, and neural and behavio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016